Carne gie Mellon University

Heinz

Unstructured Data Analysis

Lecture 14: Time series analysis with
recurrent neural nets; some other deep
learning topics; course wrap-up

George Chen



Last Lecture!

* More on deep learning:
 [ime series analysis with recurrent neural nets
* [he demo is shifted to recitation
o Extremely important concept we use: “word embeddings”
* High-level idea shifted to recitation

o [l also talk about some other deep learning topics

 Roughly how learning a neural net works

e How to deal with small datasets

* (Generating fake data that look real
e Al agents that interact with environments

e |'|l end with a course wrap-up



Sequence Data

What we’ve seen so far are “feedforward” NNs




Sequence Data

What we’ve seen so far are “feedforward” NNs

What if we had a video?
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treat each video frame
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Time > >
Time 2 > >
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Recurrent Neural Nets

Time series

Feedforward NN'’s:
treat each video frame
separately

RNNSs:
feed output at previous

W/

RNN layer

>time step as input to
RNN layer at current
time step

In PyTorch, different
RNN options:
RNN (vanilla),

LSTM, GRU



Vanilla ReLU RNN

memory that evolves over time; we want to learn how it changes

‘— -------------------

current_ state = np.zeros(num _nodes)

for 1nput 1n input _sequence: W'Se.lzmable:#m,ws.:
— s (length of single time step’s input),

# cols: num nodes

linear = np.dot(input, W) \

+ np. dot(current state, QE) \ [Uisa?2D table:

+ b* *~__| num_nodes
9%
output np.maximum(®, linear) # RelU num_nodes

bisa 1D table:

current state = output .
— num_nodes entries

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time
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that has memory RNN (vanilla),

does not incorporate LSTM, GRU

Image structure!!!
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Recurrent Neural Nets

Feedforward NN'’s:
treat each video frame

. . . |
readily chains together with separately
other neural net layers
RNNs:
S :fi_) feQd output at.prewous
< 2 _>t|me step as input to
O | RNN layer at current
© time step
Time series RNN layer In PyTorch, different
Use CNN to ike a linear layer RNN options:
structure! does not incorporate LSTM, GRU

Image structure!!!



Intuition: CNNs Encode Semantic
Structure for Images

Conv2d, Max Conv2d, Max Flatten Linear
ReLU Pool RelLU Pool (10 nodes),
2d 2d Softmax

|
|
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Intuition: CNNs Encode Semantic
Structure for Images

Conv2d, Max Conv2d, Max Flatten Linear
ReLU Pool RelLU Pool (10 nodes),
2d 2d Softmax

|
|
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Conv2d, Max Conv2d, Max Flatten
RelLU Pool RelLU Pool
2d 2d

Conv2d, Max Conv2d, Max Flatten
RelLU Pool RelLU Pool
2d 20



Recurrent Neural Nets

Feedforward NN'’s:
treat each video frame

. . . |
readily chains together with separately
other neural net layers
RNNs:
S :fi_) feQd output at.prewous
< 2 _>t|me step as input to
O | RNN layer at current
© time step
Time series RNN layer In PyTorch, different
Use CNN to ike a linear layer RNN options:
structure! does not incorporate LSTM, GRU

Image structure!!!



Recurrent Neural Nets

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

Positive/negative

Text —» — .
sentiment

Classifier

Common first step for text:
turn words Iinto vector
representations that are RNN layer
semantically meaningful
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Recurrent Neural Nets

Example: Given text (e.g., movie review, Tweet), figure out whether
it has positive or negative sentiment (binary classification)

Text —»

Common first step for text:

turn words Into vector
representations that are
semantically meaningful

In PyTorch, use the
Embedding layer

Embedding|

D
=|  Positive/negative
_> U) .
O sentiment
O
Linear layer (2 nodes),
Softmax activation
RNN layer



Sentiment Analysis with IMDb Reviews
Step 1: Tokenize & build vocabulary

Word index . Word 2D Embedding
W=\ 0| this  [0.57,0.44]
= S . movie  [0.38, 0.15]

Training reviews N rocks  [-0.85, 0.70]
3 sucks | [-0.26, 0.66]

Step 2: Encode each review as a
Ordering of words ~ Sequence of word indices into the vocab

matters “this movie rocks” — 012
Different reviews “this movie sucks” — 013
can have different .y )

engths this sucks —> 03

Step 3: Use word embeddings to represent each word



Sentiment Analysis with IMDb Reviews
Step 1: Tokenize & build vocabulary

— Word index  Word 2D Embedding

e o | this  [-0.57,0.44]
= o movie  [0.38,0.15]
Training reviews . 2 rocks  [-0.85,0.70]
3 sucks | [-0.26, 0.66

Step 2: Encode each review as a
sequence of word indices into the vocab

“this movie sucks”  — 013
Step 3: Use word embeddings to represent each word

-0.57, 0.44]
0.38, 0.15]
-0.26, 0.66]



Sentiment Analysis with IMDb Reviews

“this movie sucks”

013 —

>

Embedding]

-0.57, 0.44]
[0.38, 0.19]
-0.26, 0.606]




Sentiment Analysis with IMDb Reviews

-0.57,0.44]

o
7| [Embedding|

Embedding||Embedding

“this movie sucks”
[0.38, 0.15]
———— q

1 —

-0.26, 0.66]




Sentiment Analysis with IMDb Reviews

-0.57,0.44]

l
7| [Embedding|
N/

“this movie sucks”

_[0.38,0.15)

1 —

-0.26, 0.66]

Embedding||Embedding

Logistic
Regression




Sentiment Analysis with IMDb Reviews

o)
-
o|  [-0.57, 0.44]
) —»| T >
g )
=
LL]
“this sucks” @' v .S
T 0
b
E S
— oY

RNN'’s work with variable-length inputs

Note: Often in text analysis, the word embeddings are
treated as fixed, so we do not update them during training



What if we didn’t use word
embeddings?



Sentiment Analysis with IMDb Reviews
Step 1: Tokenize & build vocabulary

— Word index  Word 2D Embedding

e o | this  [-0.57,0.44]
= o movie  [0.38,0.15]
Training reviews . 2 rocks  [-0.85,0.70]
3 sucks | [-0.26, 0.66

Step 2: Encode each review as a
sequence of word indices into the vocab

“this movie sucks”  — 013
Step 3: Use word embeddings to represent each word

-0.57, 0.44]
0.38, 0.15]
-0.26, 0.66]



Bad Strategy: One-Hot Encoding

Step 1: Tokenize & build vocabulary

Word index Wora éOne—hot encoding
= 0 | ths ~ [1,0,0,0]
| — L m OVIe _________________ 0,1,0,0
Training reviews 2 . rocks 10,0,1,0]
3 sucks | 0, 0, 0, 1
Step 2: Encode each review as a
sequence of word indices into the vocab
“this movie sucks”  — 013
Step 3: Use one-hot encoding to represent each word
This strategy tends to work poorly in practice: 1,0,0,0
distance between every pair of words is the 0, 1,0, O
same in one-hot encoding! 0, 0, 0, 1]




Recap/Important Reminder

* Neural nets are not doing magic; incorporating structure is
very important to state-of-the-art deep learning systems

 \Word embeddings encode semantic structure —words with
similar meaning are mapped to nearby Euclidean points

* CNNs encode semantic structure for images—images that
are “similar” are mapped to nearby Euclidean points

* An RNN tracks how what’s stored in memory changes over
time — an RNN'’s job is made easier if the memory is a
semantically meaningful representation



Sentiment Analysis with IMDb Reviews

Demo will be in your recitation



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)
for input 1n 1nput sequence:

linear = np.dot(input, W) \
+ np.dot(current state, U) \
+ Db

output = np.maximum(®, linear) # RelLU
current _state = output

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num_nodes)
outputs = []
for input 1n 1nput sequence:

linear = np.dot(input, W) \
+ np.dot(current state, U) \
+ D

output = np.maximum(®, linear) # RelU
outputs.append(output)

current _state = output



> J > output prediction

Time series RNN layer




> output prediction O

Time 1 > output prediction 1

Time 2 > output prediction 2

K



>

> output t - 1
/ Vanilla RNN tends to

forget things quickly

7 > output t

outputs|[t]

= np.maximum(Ap.dot (input sequence[t], W)

+ np.dot(outputs[t-1], U)
+ b, 0)

/ > output t + 1



Add explicit long-term

memory!
_trlin_le > —7 > output f — 1
/ But need some way
s to update long-term
memory!

Timet

> —7 > output t

Time
t+ 1

> —7 > output t + 1




Long-term memory

/ Add explicit long-term

memory!
I'inf > > output t — 1
// But need some way
to update long-term
memory!
Timet > > output t




Long-term memory

/ Add explicit long-term

memory!

Time
t -1

> > output t - 1

V4

> > output t

But need some way
to update long-term
memory!

Timet




Time

Timet

Long-term memory

/

, W

Add

Long-term
memory updater

V4

But

explicit long-term
memory!

> output t — 1

need some way

to update long-term

memory!

Called a “long short-term
memory” (LSTM) RNN

Remembers things

longer

» out

‘han vanilla RNN

out t



Analyzing Times Series with CNNs

 Think about an image with 1 column, and where the rows
iIndex time steps: this is a time series!

e Think about a 2D image where rows index time steps, and
the columns index features: this is a multivariate time series
(feature vector that changes over time!)

e CNNSs can be used to analyze time series but inherently the
Size of the filters used say how far back in time we look

e |f your time series does not have long-range dependencies
that require long-term memory, CNNs can do well already!

e |f you need long-term memory, use RNNSs



Some Other Deep Learning
Topics



Learning a Deep Net

Suppose the neural network has a single real number parameter w

tLoss L The skier wants to get to the lowest point
m The skier should move rightward (positive direction)
w

AL The oenvatlve at the skier’s position is negative

tangent line

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

>
w




Learning a Deep Net

Suppose the neural network has a single real number parameter w

4l 0ss L

NP,
\

v



Learning a Deep Net

Suppose the neural network has a single real number parameter w

4l 0ss L

.

v



Learning a Deep Net

Suppose the neural network has a single real number parameter w

4l 0ss L

\"‘:\

v



Learning a Deep Net

Suppose the neural network has a single real number parameter w

4l 0ss L
In general: not obvious what error landscape looks like!
=> we wouldn’t know there’s a better solution beyond the hill
Popular optimizers . Q
(e.9., RMSprop, @Ctory'
Adam, LookAhead, "_
RAdam) are variants
of gradient descent . -
l_.ocal minimum Better
solution

In practice: local minimum often good enough
®

v




Learning a Deep Net

2D example

Slide by Phillip Isola



Remark: In practice, deep nets often
have > millions of parameters, so very
high-dimensional gradient descent



Handwritten Digit Recognition

Overall loss:

Training label: 6

1 n
= LR(h(x). v)
=1
v
f1 (X;) fo(f1(Xi)) ‘
> > > | LOSS > crror
L L(f2(f (X)), Vi)
28x28 Image —
X f1 f2

Gradient: 00 2imt LX), )
a0

Automatic differentiation is crucial in learning deep nets!

All parameters: 6

Careful derivative chain rule calculation: back-propagation



Gradient Descent

Training Training Training Training Training Training

example [l example [l example [l example [ example example
1 2 3 4 5 n

I T —

; ' ; ; ; ;
loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn
| |
’
\We have to compute lots  average loss Computing gradients
of gradients to help the | using all the training data

skier know where 10 9ol compute gradient seems really expensive!
and move skier



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)
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Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training
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I T —
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loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn

'

compute gradient
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(can think of this gradient as a noisy approximation of the “full” gradient)



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss 5 -+ lossn

'

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —

y y ; ; ; ;
loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn
y
compute gradient An epoch refers to 1 full pass
and move skier through all the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)



Minibatch Gradient Descent

Training Training Training Training Training Training

example [ example [l example [ll example [l example [EEEl example
1 2 3 4 5 n

I T —
| | | ! | |
loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

!

average loss

'

compute gradient
and move skier




Minibatch Gradient Descent

Training Training Training Training Training Training
example [ example [l example [ll example [l example [EEEl example
1 2 3 n
loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

!

average loss

Batch size: how many | |
training examples we ~ COMPuUte grad!ent
consider at a time and move skier

(in this example: 2)



Best optimizer? Best learning rate?
Best # of epochs? Best batch size?
Active area of research
Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower
than CPU!) if you choose # epochs/batch size poorly!!!



Dealing with Small Datasets



Fine Tuning

If there’s an existing pre-trained neural net, you could modify it
for your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

-!’

You collect photos from the internet of both, but your dataset
size is small, on the order of 1000 images

Strategy: take pre-trained convnet (such as the state-of-the-art ResNet)
for ImageNet classification and change final layers to do classification
between Tesla’s and Toyota’s instead of classifying 1000 objects



Fine Tuning

Sentiment analysis RNN demo

---------

o

o S| Positive/negati

o| - = ositive/negative
Text —> S|——> 7 . J

= S sentiment

= O

LLl

Welights here are treated as fixed & come from
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)

IMDb review dataset is small in comparison



Data Augmentation

Another way of dealing with small datasets: generate perturbed
versions of your training data to get a larger training dataset

)

Training image Mirrored Rotated & tralated
Training label: cat Still a cat! Still a cat!

We just turned 1 training example in 3 training examples

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating by 180
degrees would be bad: confuse 6’s and 9’s)



Generating Fake Data That Look Real



Generate Fake Data that Look Real

Unsupervised approach: generate data that look like training data

Example: Generative Adversarial Network (GAN)

Real training

|
Counterfeiter exar;wp © Cop

Fake
— training — Pick 1
example

Deep
net

Deep net

.. > Real/fake
classifier

Noise —

Counterfeiter tries to get better Cop tries to get better at telling
at tricking the cop which examples are real vs fake

Terminology: counterfeiter is the generator, cop is the discriminator

Other approaches: variational autoencoders, pixelRNNs/pixel CNNs



Generate Fake Data that Look Real

=/ - 4 1 = ol
. \“ > % R N

Fake celebrities generated by NVIDIA using GANs
(Karras et al Oct 27, 2017)

Google DeepMind’s WaveNet makes fake audio that sounds like
whoever you want using pixelRNNs (Oord et al 2016)



Generate Fake Data that Look Real

Zebras > Horses Summer Z_ Winter

b
K

horse — zebra

Cezanne

Monet

Photograph

Image-to-image translation results from UC Berkeley using GANs
(Isola et al 2017, Zhu et al 2017)



Al News Anchor

China's Xinhua agency unveils Al news
presenter

By Chris Baraniuk
Technology reporter

® 8 November 2018 f [~ IR~ | E «§ Share

Source: https://www.bbc.com/news/technology-46136504



Deep Reinforcement Learning

The machinery behind AlphaGo and similar systems

reward

------------------------------------------

. Al agent l

Al score for : 1aKe

: Deep different : action
current — — S g
- net (state, action):

. state

----------------------------------------

update agent’s state



The Future of Deep Learning

Deep learning currently is still very limited in what it can do

e | earns simple computer programs (functions) comprised
of a series of basic operations — need to be able to
compute derivatives of these basic operations

Adversarial examples at test time remain a problem

Pretty much all the best ideas that lead to amazing
prediction results incorporate problem-specific structure

e For example, think about how CNNs and RNNs
iIncorporate structure of images/time series

e How do we get away with using less expert knowledge”?

ow do we do lifelong learning?

ow do we reason about causality?



Unstructured Data Analysis

Question Data Finding Structure Insights

— o
gy s

The dead body The evidence Puzzle solving, When? Where?
careful analysis Why? How?

This is provided Some times you

by a practitioner  have to collect Exploratory data P erpetrator)r
more evidence! analysis catchable:
Answer original
guestion

There isn’t always a follow-up prediction problem to solve



Some Parting Thoughts

Remember to visualize steps of your data analysis pipeline
e Helpful in debugging & interpreting intermediate/final outputs
Very often there are tons of models/design choices to try

e Come up with quantitative metrics that make sense for
your problem, and use these metrics to evaluate models
(think about how we chose hyperparameters!)

e But don’t blindly rely on metrics without interpreting
results in the context of your original problem!

Often times you won’t have labels! If you really want labels:

e Manually obtain labels (either you do it or crowdsource)
e Set up “self-supervised” learning task

There is a lot we did not cover — keep learning!



Want to Learn More?

e Some courses at CMU:

Natural language processing (analyze text): 11-611
Computer vision (analyze images): 16-720

Deep learning: 11-785, 10-707

Deep reinforcement learning: 10-703

Math for machine learning: 10-606, 10-607

Intro to machine learning at different levels of math:
10-601, 10-701, 10-715

Machine learning with large datasets: 10-605

 (One of the best ways to learn material is to teach it!

Apply to be a TA for me next term!



